Coin Change Problem

- Finding the number of ways of making changes for a particular amount of cents, \(n \), using a given set of denominations \(C=\{c_1\ldots c_d\} \) (e.g., the US coin system: \{1, 5, 10, 25, 50, 100\})
 - An example: \(n = 4, C = \{1,2,3\} \), solutions: \{1,1,1,1\}, \{1,1,2\},\{2,2\},\{1,3\}.

- Minimizing the number of coins returned for a particular quantity of change (available coins \{1, 5, 10, 25\})
 - 30 Cents (solution: 25 + 2, two coins)
 - 67 Cents ?

- 17 cents given denominations = \{1, 2, 3, 4\}?
Find the Fewest Coins: Casher’s algorithm

- Given 30 cents, and coins \{1, 5, 10, 25\}
- Here is what a cashier will do: always go with coins of highest value first
 - Choose the coin with highest value 25
 - 1 quarter
 - Now we have 5 cents left
 - 1 nickel

The solution is: 2 (one quarter + one nickel)
Greedy Algorithm Does not Always Give Optimal Solution to Coin Change Problem

- Coins = \{1, 3, 4, 5\}
- 7 cents = ?

- Greedy solution:
 - 3 coins: one 5 + two 1

- Optimal solution:
 - 2 coins: one 3 + one 4
Find the Fewest Coins: Divide and Conquer

- 30 cents, given coins \(\{1, 5, 10, 25, 50\}\), we need to calculate \(\text{MinChange}(30)\)

- Choose the smallest of the following:
 - \(1 + \text{MinChange}(29)\) #give a penny
 - \(1 + \text{MinChange}(25)\) #give a nickel
 - \(1 + \text{MinChange}(10)\) #give a dime
 - \(1 + \text{MinChange}(5)\) #give a quarter

- Do not know \(\text{MinChange}(29), \text{MinChange}(25), \text{MinChange}(10), \text{MinChange}(5)\)?
Coin Change Problem: A Recursive Algorithm

1. MinChange(M)
2. if M = 0
3. return 0
4. v ← ∞
5. for c in denominations ≤ M
6. v ← min {MinChange(M–c) + 1, v}
7. return v
Recursive Algorithm Is Not Efficient

- It recalculates the optimal coin combination for a given amount of money repeatedly.
How to avoid computing the same function multiple times

- We’re re-computing values in our algorithm more than once

- Save results of each computation for 0 to M

- This way, we can do a reference call to find an already computed value, instead of re-computing each time

- Running time $M \times d$, where M is the value of money and d is the number of denominations
Coin Change Problem: Save the Intermediate Results

1. \textbf{MinChange}(M)
2. if minChange[M] not empty
3. \hspace{1em} return minChange[M]
4. if \(M = 0\)
5. \hspace{1em} return 0
6. for \(c\) in denominations \(\leq M\)
7. \hspace{1em} \(v \leftarrow \min \{\text{MinChange}(M-c) + 1, v\}\)
8. minChange[M] = \(v\)
9. return \(v\)
The Change Problem: Dynamic Programming

1. MinChangeDP(M)
2. minCoin[0] ← 0
3. for m ← 1 to M
4. minCoin[m] ← infinity
5. for c in denominations ≤ M
6. if minCoin[m–c] + 1 < minCoin[m]
7. minCoin[m] ← minCoin[m–c] + 1
8. return minCoin[M]
Proof:
Let N be the amount to be paid. Let the optimal solution be \(P=A*10 + B*5 + C \). Clearly \(B \leq 1 \) (otherwise we can decrease \(B \) by 2 and increase \(A \) by 1, improving the solution). Similarly, \(C \leq 4 \).

Let the solution given by GreedyCoinChange be \(P=a*10 + b*5 + c \). Clearly \(b \leq 1 \) (otherwise the algorithm would output 10 instead of 5). Similarly \(c \leq 4 \).

From \(0 \leq C \leq 4 \) and \(P=(2A+B)*5+C \) we have \(C=P \mod 5 \).
Similarly \(c=P \mod 5 \), and hence \(c=C \). Let \(Q=(P-C)/5 \).
From \(0 \leq B \leq 1 \) and \(Q = 2A + B \) we have \(B=Q \mod 2 \).
Similarly \(b=Q \mod 2 \), and hence \(b=B \).
Thus \(a=A \), \(b=B \), \(c=C \), i.e., the solution given by GreedyCoinChange is optimal.

Greedy algorithm outputs optimal solutions for coin values 10, 5, 1